	Name:
Ms. Torres	Per:

A.P. CALCULUS BC

Summer Calculus - Readiness Packet

Instructions:

- This summer review packet contains worksheets reviewing topics necessary for Calculus. Topics are from
 - Arithmetic
 - Algebra 1
 - Geometry
 - Algebra II
 - Trigonometry
 - Calculus
- 2. This summer review packet is <u>due on the first day of class</u> of the fall semester, counts as homework, and <u>is required to be admitted into the A.P. Calculus class</u>.
- 3. You may NOT use a calculator before the "Quadratic Formula" worksheet.

(Show all work whenever there is space; otherwise, no credit.)

- 4. Estimated time to do all of this work is 10 hours.
- 5. We will start with Calculus on the first day of school.

Materials required for fall semester

On the first day of school you will need the following materials:

- 1. Textbook: Rogawski's *Calculus for AP* Early Transcendentals*, 2nd Edition (2012) ISBN -13: 978-1-4292-5074-0 (has a red strip on the right side of the cover)
- 2. Calculator: A non-intercommunicating scientific calculator (graphing capability required) (such as a TI-83/84)
- Binder(s) for notes and homework assignments (organized and with extra paper)
- 4. 2 pencils & an eraser (no pen)

Deci	mal
Pra	ctice

tdd/Suma.

91.3991.9497.9194.996.92+2.4 +2.71 +3.05 +3.71 +3.1

btract/Resta.

32.4 011.94 87.91 94.9 06.92 -1.39 -2.71 -3.05 -3.71 -3.1

Ultiply/Multiplica.

D 2.4 D 5.61 B 11.9 D 5.4 B 3.91

X 8 X 9 X 6 X 3.2 X.32

ivide/Divide.

9813 (177/2 (8).3/1 (19)1/155 205/31.2

	Fract Basic	1011	ame: Per:	
Make the	indicated eg	uivalent fi	maction.	
Reduce ea	ch fraction	8 3 4 =	8 43=	12
B 2+2 1 4+2 2	$6\frac{4}{8} = -$	$-\sqrt{2} =$	<u> 88</u> = -	
(9) 版= 豆	an improve $1024 = -1$	T (1) 33 =	3 (3) 4% =	8
Convert to 13 3	a mixed 1	number (÷ 15/16 3	(6 <u>31</u>	
Add. 1/3 1/3	18 1 + 1	(19 ± 5 + 5	Ø 3/8 + 4/8	á
Subtract. (21) $\frac{1}{3}$ $\frac{1}{3}$	22) 2 - 4	3 5 -5	247 -48	

tractions

()复模二 **⑤ 共 + 計 =** 의류+유=

争等一十二四多子士 역片一十二

□元-指= □元·兴= 10등-종=

tractions Practice II

Add: utilize equivalent fractions to first get same denominator.

图之格= ③元十5=

Subtract: Utilize equivalent fractions to first get

⑤22-1音= ⑥表-3= same denominators.

$$97 \times \frac{2}{5}$$

Hint: (+)=1, (-)=1.

REVIEW Add Copreside.

(+8)+(+6)= (7)(-7)-(+5)=

(-8)+(-6)= (7)(-7)-(-5)=

(-8)+(-6)= (8)(+7)-(-5)=

(-8)+(+6)= (9)(-7)-(+5)=

(-8)+(+6)= (9)(-7)-(+5)=

(-37)+(+24)= (9)(-37)-(-24)=

①
$$(+12) \times (+3) = (-12) \div (+3) = (-12) \times (-3) = (-12) \div (-3) = (-12) \div (-3) = (-12) \div (-3) = (-12) \times (-3) = (-12) \times (-3) = (-12) \times (-3) = (-12) \div (-3) = (-12) \times (-3) = (-$$

	Vaine:
	Per:
Order of Opera	
+, -, x, - must be d	
(1) Parentheses	(innermost first)
ExponentsMultiplication &	Division (L->R)
4 Addition & Sul	straction $(L \rightarrow R)$.
(If not, you will get	the wrong answer)!
1 2+3×9-4	2 3×5+4÷2
$37+9\times3\div3-1$	$= \Box$ $(4) 2 + 3^2 - 1 \times 5$
(a) $1 + 9 \times 3 \div 3 - 1$	(4) 2+3°-1×5
$(5)(5+3)\times2+3^2$	$= []$ $(6+2^2)-4\times2$
	= 2
$9.5^{2} + 9 \times (3) - 1$	$= 2$ 3) $(3^2+6) \div 3 \times 5 - 1$
	÷
= 51	= 24

Order of Operations IV

Make sure you get the following answers!
$$0.42-9\times3+16$$
: 1.317 $0.42-9\times3+16\div419$

$$9^{2}+4\div2-7$$
 [76] (92+4) $\div5-7$ [10]

$$)9^{2}+4\div2-7$$
 76 (a) $(9^{2}+4)\div5-7$ **10** (a) $(9^{2}+4)\div5+3]\div5$ **4**

Summary of Arithmetic

Whole Numbers:

Line up numbers by their Right Sides.

+ : Greater than or equal to 10 => Carry over to next column (to the left).

: Top number Smaller than Bottom number => Borrow (from column to the

left: "1 less, 10 more").

x : Multiply One's digit in bottom # by Every digit in the top # (= 1st Row);
Repeat, using Ten's digit in bottom # (= 2nd Row & moved over 1 column)
Repeat for each digit in bottom #; then Add up all Rows.

/ : Try dividing divisor into 1st digit of dividend; if too big try 1st 2 digits; if still too

big, try 1st 3 digits, etc.

Write Quotient and Multiply it with Divisor & Subtract it from LEFT side of dividend.

Bring down Next Digit of Dividend & Repeat process.

Decimals:

+ . - : Decimal Points need to be in-line.

x: The # of Dec.Places in the problem = The # of Dec.Places in the Answer. (Count them.)

/ : Move the Decimal Point in the Divisor all the way to the Right, &

Move the Decimal Point in the Dividend to the Right the Same # of places.

Fractions:

+ . . : Be certain Denominators are the Same first!

x : Multiply Numerators, Multiply Denominators. (Regardless of Denominators).

/ : Multiply by the Reciprocal (upside-down) of the 2nd Fraction.

Integers:

Integers are Positive (+) or Negative (-) Whole numbers.

+ : (+) indicates a direction of "Higher", & (-) indicates a direction of "Lower".

: To Subtract (-), Add (+) the OPPOSITE

 $x \& / : (+) \times (+) = (+), (-) \times (-) = (+).$ But $(+) \times (-) = (-).$

Order of Operations:

Operations must be done in "Please Excuse My Dear Aunt Sally" order:

() : Parentheses (operations inside them)

Exponents (= repeated multiplication)

x. /: Multiply & Divide (Left --> Right)

+, - : Add & Subtract (Left -> Right)

		n 1975 (North World Charles and Annie (North Charles and Annie and Annie (North Charles and Anni	Nas	ne:	ojimasepis was ojsoji pasamenti
		BASI	j	P	er:
Def A		MATH WITH ATH WITH FULLY, THEIR V GIVEN AN EQUI	ALON, ME ALOR MIT MKNOM KNOMH	N #S, BE KNOWH L CAN FREQUENTLY	
	a) Known #s b) Unknown #s	such as 1 (& constant)	, 2, 3, -3 Indicated 1	5, 7, 3.14, by "a", "b", "	etc. c", etc.
Defty V	ARIABLE: ANGT a) INDEPENDENT	HING (sual AS	etc.	DOES CHAN by that you're sh That is rela	GE. avting with.
		value. (Also called is a list	a variab	le expression ons to be perfluentity (ie. a relat	L, which ormed ed #))
	(i) Function			the most community of the independent of the independent of the independent of the formula of th	
<u>‡</u>	Evaluate: { ex	Variable I If $X = 1$ E IF $X = 1$	put (1110) 5, y=10, f(x)	$2X + 1 = \begin{bmatrix} \\ =X^2 - 1 = \end{bmatrix}$	

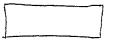
Like Terms Name:
Per:
Circle the two Similar monomials in each set.
Circle the two Similar monomials in each set. Then write their sum on the right by adding coefficients
SUM TUN
① $6x^3$ $5x^2$ $2x$ $3x^2$
@ 3x2y 4x 7xy 5x2y
$32a^2b^3$ 8b $12a^2b^3$ 9 a^3
@ 13n 6mn 8mn Hm2
© 7pg 5 12pg ² 8
6 9s3t 4st2 3s2t 2s3t
95 utv 2 u3 vw2 8 u2 v 4 u3 v w2
8 7h2 k3 4hk3 15h2k 9h2k []
9 3rs2 8r3 1 2r3 [1]
D 2abc 12 15 xy2 9 []

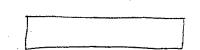
Simplifying Expressions

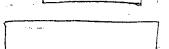
Simplify by combining the similar monomials (like terms)

$$0.2x - 5 + x + 3$$

$$(3)$$
 $4m - 3 + 3m + 1$

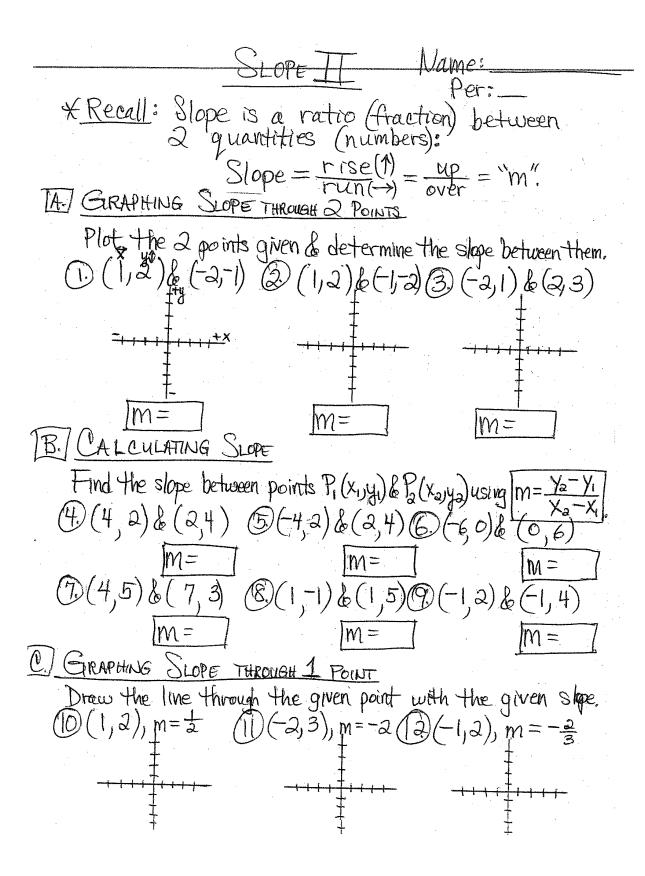

$$(3)$$
 $3x^2 - 2x + 1 + x^2 - 2x + 3$


$$@3y^2-5+2y^2-3y+4$$


$$(5)$$
 $a^2 + 3ab - 4ab + 3a^2$

$$\bigcirc 4 - 3n - 5n^2 - 2 + n - 3n^2$$

$$95x-3t-7-x+2t+3$$



Addition Equations. @ X+3=9 @ X+5=47 (B) X+14 = 23 (5) X+57=105 (6) X+215=891 Equations. Subtraction @ X-3=9 @ X-5=47 X-14=23 (5) X-57=105 (6) X-215=891 Multiplication Equations. 95X = 15 3X = 305 12X = 96 6 25X = 875 Division Equations. DAX = 10(2) (2) \(\frac{1}{5} = 15 \) (3) \(\frac{1}{2} = 30 \) 1X = 201 $5 \times \frac{1}{12} = 96 \quad 6 \times \frac{1}{25} = 875$

GRAPHING III Name:
(Point-Slope form) Per:
10 find the equation of a line when given a
To find the equation of a line when given a point (x, y,) and a slape (m), use "Point-Slape" form.
Point-Slope form is: [y-y=m(x-x)].
ext Find the equation of the line through (3,4) with slope=5
$y-y_1=m(x-x_1)$
$y-y_1 = m(x-x_1)$ y-4 = 5(x-3) y-4 = 5x-15 y+4 = 4
$EQ_{line} = \boxed{y = 5x - 11}$
TATEQUATION OF LINE GIVEN POINT & SLOPE
Find the
Find the y=mx+b equation of each line
(1)(2,3)6m=4 (2)(5,2)6m=3(1,6)6m=7
V= N=
4= 1
$Y = \{Y = \{Y = Y = Y = Y = Y = Y = Y = Y $
B. EQUATION OF LINE GNEW 2 POINTS
time the y=mx+b equation of each time First iso [m-Y-Y]
(2,-1)&(-3,14) (2,3)&(-1,1) (2-x)

PEVIEW V-V)
Find the slope of the line between the given points.
B. SLOPE-INTERCEPT FORM: [y=mx+b] (5) y=2X-3
D= EQUE = 1
(1) Graph the line with (8) M=26b=-1.
$\frac{1}{m} = \frac{1}{m}$
C POINT-SLOPE FORM: $y-y_1=m(x-x_1)$
Find the equation of the line from the given information. $9(6,3)$ & $m=-\frac{1}{3}$ $9(5,7)$ & $9(5,7)$
1500 J= JA 50 JJ= J
(1) Write in Standard form: (2) Write in Slape-Intercept form 5+24=7X 3X+24=5

EXPONENT

Per:_

$$\mathbb{O}[X_{\mathbf{w}}\cdot X_{\mathbf{u}}=X_{\mathbf{w}+\mathbf{u}}]$$

$$4\sqrt{x^{\circ}=1}$$

$$(3)(x^m)^n = x^{mn}$$

$$\boxed{5} X^{-m} = \frac{1}{X^{+m}}$$

$$3\sqrt{\frac{\chi^m}{\chi^n}} = \chi^{m-n}$$

$$\boxed{5}, 10^{-3} = \boxed{0} (-2)^{-3} = \boxed{0}$$

FACTORING	Name:
C= Always attempt 1st 1)	Per:
(Himis a leader 1 = 6)	

FACTOR OUT THE COMMON MONONIAL FROM EACH POLYNOMIAL.

$$exi$$
 2x+6 = $2 \cdot (x+3)$

$$(4) 2x + 2y = [()]$$

$$66X + 12 = 1$$

$$\mathcal{O}_{2a+2b+2c} = ($$

$$(8) 2a^2 + 4ab + 2b^2 = (1)$$

$$60 - 12c^2 + 15c = (6)$$

$$10m^3n - 20m^2n^2 + 5mn^3 =$$

	Manage
TACTORING.	- Per:
Def To Factor: To write	as a multiplication public
exi 12	2X+6
2) 6	(X+3)
(0-)	2×+6 = 2·(X+3)
Factor. (Hint: Always facto	or out monomials first)
(1) $3X + 12$ (2) $12X - 18$	$3a^2-ab$ $= ($
$(4) 6x^2 - 6x$ $(5) 5y^2 + 25y$ $= [$	$(6)21a^3-14a^2$
$910a-35b+158x^2+3x+2$ =[() = ()	$9 \times 2 + 9 \times + 20$
$0) X^{2} + 6X - 16 \qquad (1) X^{2} - 6X - 16$ $= (1) (1) = (1) (1)$	$(2)X^2-10X+16$
$3)3x^2+X-2$ $4)8x^2+10X-3$	3 (5) 8x2+10x-12
7()()1] ()() =

SOLVING
EQUATIONS III
(by Factoring)

Directions: 1) First get one side of the equation to be ZERO.

a) Then factor, set each factor=0, & solve events

$$2x + 9 = 3$$
 $2x + 6 = 0$
 $2x + 6 = 0$
 $2x + 6 = 0$

$$\begin{array}{l} (x) \quad X^2 + 5X + 6 = 0 \\ = (x) \quad (X) \quad (X) = 0 \\ = (x) \quad (X) \quad (X) = 0 \\ = (x + 2)(x + 3) = 0 \end{array}$$

So either
$$2 = 0, 0 = X + = 0$$

 $2 \neq 0; X = -3$

So either
$$2=0$$
 or $X+2=0$ So either $X+2=0$ or $X=-3$ $X=-3$

Find X.

(1)
$$(X+4)\cdot(X-5)=0$$
 (2) $0=(X+1)(X+8)$ (3) $X\cdot(X-6)=0$

(4)
$$X^2 + 8X + 15 = 0$$
 (5) $X^2 - X - 12 = 0$ (6) $X^2 + 10X + 16 = 0$

$$(9) x^2 + 8 = 9x$$
 $(8) 4x^2 - 36 = 0$ $(9) 3x^2 + 1 = 4x$

THE
CYLLADRATIC
-
+ CRMULA
1 CONTRACTOR

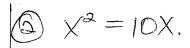
Peri

* THE QUADRATIC FORMULA IS ONE OF THE MOST IMPORTANT FORMULAS IN ALGEBRA.

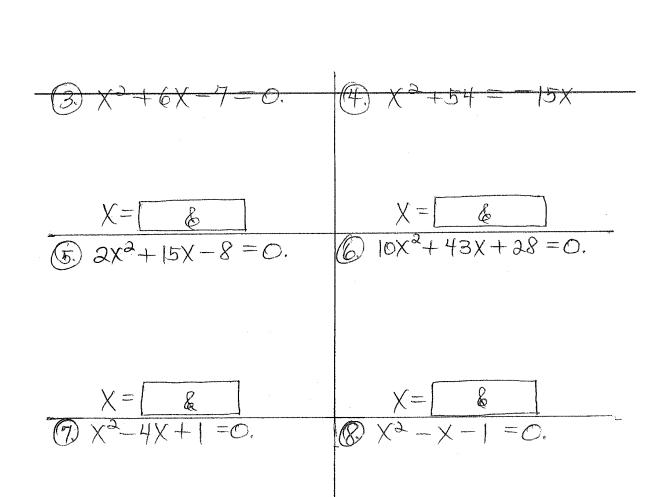
IT IS THE GENERAL SOLUTION OF ANY QUADRATIC EQUATION.

THEOREM: IF
$$\alpha x^2 + bx + c = 0$$
 (& $\alpha \neq 0$),

THEN $x = \frac{-b \pm Jb^2 - 4ac}{2a}$.

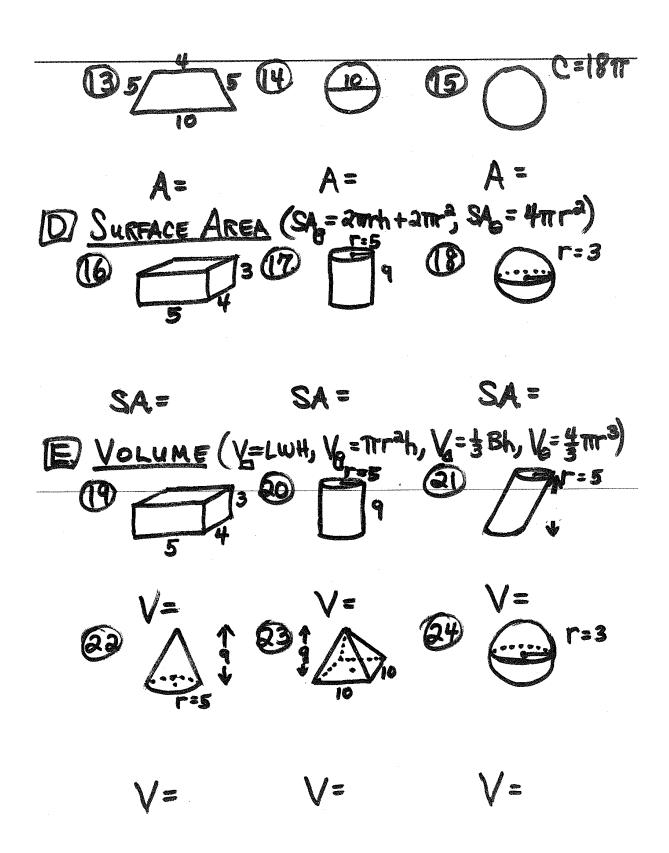

(i.e. It finds the X-value for which a quadratic expression = Zero) (and can be used when equal to other values too it rearranged)

NOTE: ALTHOUGH FACTORING CAN BE USED TO SOLVE SOME QUADRATIC EQUATIONS EQUAL TO ZERO (RELATIVELY QUICKLY), THE QUADRATIC FORMULA SOLVES ALL QUADRATIC EQUATIONS (ALTHOUGH USUALLY NOT AS QUICKLY).

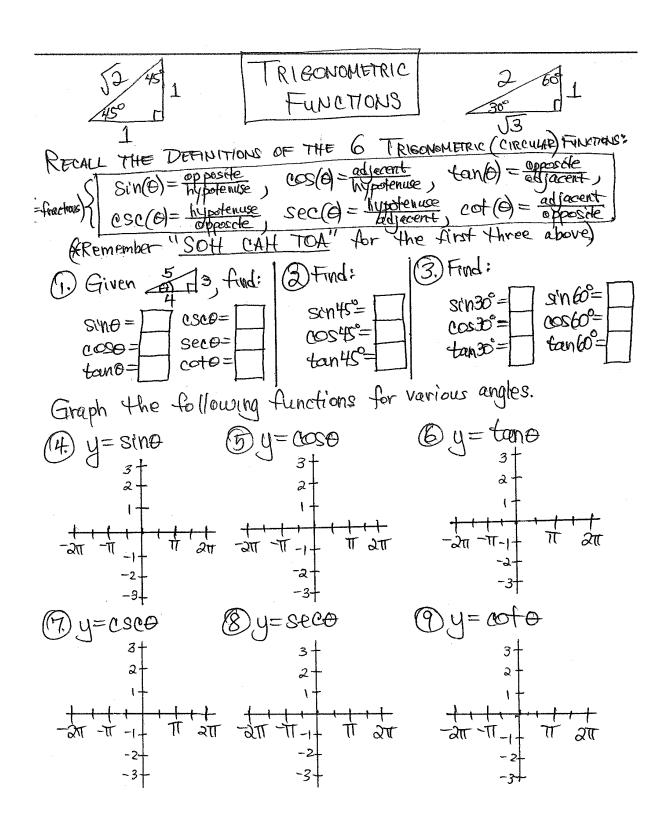

DIRECTIONS: Use the Quadratic Formula to solve all of the following equations.

(Be sure to always get I side equal to Zero 135)

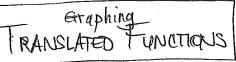
①
$$X^2 - 8X + 15 = 0$$
. ② $X^2 = 10X$.



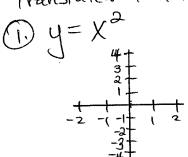
$$X = \boxed{6}$$

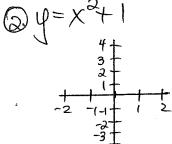


$$X = \begin{bmatrix} & & & & \\ & &$$

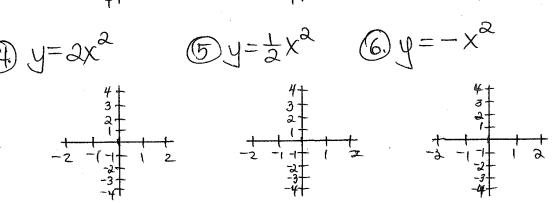

		Vane:
	G EOMETRY	Rec
DLENGTH (a	2+62=c2)	•
(1) c 3	(2) 19 J6	3 13 Ja
B) PERIMETER	b= & CIRCUMFEREN	a= ce (C=Nd=anr)
\oplus \square_3		3
P	P=	P=
T 5/10	8 @ 6	C=16m
P	C =	average base)
CJ AREA (A)= 00 []3	bh, 4= = bh, 4=	$\frac{(b+b)}{2}h, A=\pi r^{2}$
A=	A=	

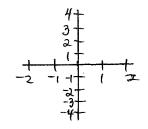
		4446
	IN VERSE	Pari
Dely INVERSE FUNC	tunetions itial, f'(x): A F	FUNCTION THAT
REVERSES TH	EFFECT OF A GI	NEW FUNCTION (XX)
* NOTE: TWEESE Y-VALUE J. Ge. for	functions only ex souly occur once, strictly increasing or	1ST FOR FUNCTIONS WHOLE strictly decreasing functions
STERS: 1) Solve for 2) Switch X	de y.	
Find and graph the	inverse function y t	or the given function y.
① $y = x + 3$.		, 4+ 3+
3+ 2- 1- -4-3-2-1-1	234	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
-2+ -3- -4+	(4) y= x ² ,	-2T -3+ -4+ X > Q
(3) y = 2x + 1,		4+ 3+
- 	234	2+ 1- -4-3-2-1-1-2-3-4
-2+ -3+ -Y+		-2+ -3+ -4+

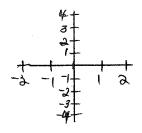



Graphing COMMON FUNCTIONS Use an Xy Table to graph the following functions. ADICALS) y = X = (= IX) B y = X = (= 3IX) B y = X +

Use an xy table to accurately graph the following translated functions. Then try to notice the effect.)

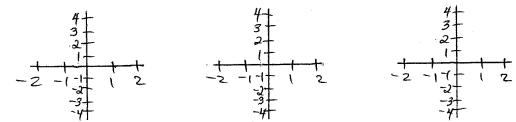

Then try to notice the effect.) $y = x^2$ $y = x^2 + 1$ $y = x^2 - 1$ $y = x^2 + 1$ $y = x^2 - 1$ $y = x^2 + 1$ $y = x^2 - 1$ $y = x^2 + 1$ $y = x^2 - 1$ $y = x^2 + 1$ $y = x^2 - 1$ y =

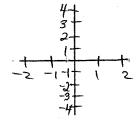


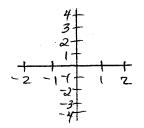


}	1	
	4+ 3+ 2+	
-2	-1-1+ -1-1+ -3+	1 2
	-41	

$$(4) y = 2x^2$$

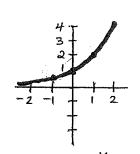




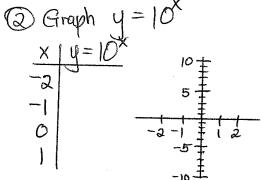


$$(8) y = (x-1)^{6}$$

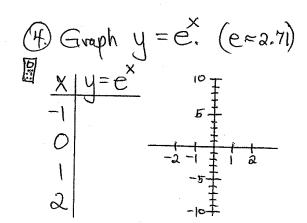
$$(x+1)^2$$
 $(x+1)^2$ $(y=(x-1)^2$ $(y=-\frac{1}{2}(x+1)^2+2$

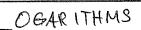

Per:_

EXPONENTIALS


Deft EXPONENTIAL FUNCTION: A FUNCTION WITH A CONSTANT BASE D>O AND A VARIABLE EXPONENT.

ex Graph
$$y = 2$$
.


 $x \mid y = 2$
 $x \mid y = 2$



(1) Graph $y = 3^{\times}$ $\begin{array}{c} x \mid y = 3^{\times} \\ \hline -1 \\ 0 \\ \hline 2 \\ \end{array}$

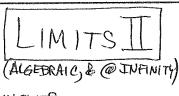
(3) Graph $y = \left(\frac{1}{2}\right)^{x}$ $\frac{x}{2} = \left(\frac{1}{2}\right)^{x}$ $\frac{x}{2} = \left(\frac{1}{2}\right)^{x}$ $\frac{3}{2} = \frac{1}{2}$ $\frac{1}{2} = \frac{1}{2}$

OBARITHMIC FUNCTION: A FUNCTION WITH A

CONSTANT BASE D>O AND A VARIABLE POWER

FOR WHICH THE EXPONENT NEEDED ON D

TO ARRIVE AT THE POWER IS SOUGHT.


TO ARRIVE AT THE POWER IS SOUGHT.

i.e. logby = X \(\Limin \) y = b \(\text{(exponent needed)} \(\text{(exponent needed)} \)

ext log 8 = 3) because 8 = 2.

Graph y = log x, $\frac{x}{log x}$ (10g = 10g10)

	i lawa:
(=>int	IMITS I Per:
A NUMERICAL TABLE Use a numerical to	& GRAPHING ble for #31-3 & graph #84-10 (+#1015).
(1) $\lim_{X \to 5} (2X+1) = \frac{1}{2X+1}$ (3) $\lim_{X \to 0} (X ^{X}) = \frac{1}{2X+1}$ $\lim_{X \to 0} (X ^{X}) = \frac{1}{2X+1}$	
(5) cim(1) =	_ X > od / L
(7) \lim(e^-x)=	8 lim (tan'x)=
9 lim(tan-1x)=	$\frac{1}{10}\lim_{X\to\infty}\frac{2X-1}{X-1}=$
B) DIRECT SUBSTITUTION Frequently limits of (so always try direct s (1) lim(2X+1) = X-75	If the as the y-value at the x-value substitution first). (2) $\lim_{x\to 3} (x^2) = $
(3) $\lim_{x \to 2} (x) = $	(4) lim(JX) = \[\times \times \tag{\tag{Y}}
$(5) \lim_{X \to 5} (\frac{ X }{X}) = $	$G\lim_{X \to -3} \left(\frac{ X }{X} \right) = $

(A	LGEBRAIC, & @ INFINITY)	
(C) ALGEBRAIC TECHNIC	<u>ques</u>	
Although Non-Zero=	= undefined, as the denominator→C) the
Calina > M	hit = Indeterminant and requ	(VES
	as factor & reduce and commo	<u></u>
$0 \lim_{X \to 6} \frac{X^2 - 36}{X - 6} =$	$= 2 \lim_{x \to 6} \frac{x-6}{x^2-36} =$	=
3) lim_2X-18 = x→9 5X-45	$= \frac{4}{x+1} \frac{(4) \lim_{x \to 1} \frac{x^2 - 3x + 2}{x-1}}{x-1} =$	=
(5) lim 3x2-4X+4 = x→2 2x3-8	$= \frac{6 \lim_{x \to 4} x^{2} - 5x + 6}{x} = \frac{1}{x}$	=
$(7) \lim_{X \to 0} \frac{X^3}{X} =$	= (8) lém X = X-70 X	=
$Q_{X\rightarrow 1}\left[\frac{1}{1-X}-\frac{2}{1-X^2}\right]=$	=	=
D AT INFINITY	5 CV - ~ 1 Oin	(4)-0
Two basic limits of	it intinity are lim (x)— and the	os X) - Un
= Indeterminant &	of X in the denominator.	tivator og
De lun (x)=	Q $\lim_{x \to -\infty} \left(\frac{1}{x}\right) =$	
3) Lim (X2)=	Delin (x2) =	
(5) lim (2X+1)=		
(7) Lim (4) =	$\lim_{X \to \infty} \left(\frac{7X}{8X+9} \right) =$	
$9 \lim_{X\to\infty} \left(\frac{3x^2+2}{4x+5}\right) =$	$\boxed{\bigcirc \text{lim} \left(\frac{3X+2}{4X^2+5} \right) =}$	

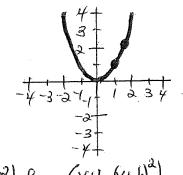
PITHIS IS AN IMPORTANT CALCULUS-READINESS WORKSHEET.)
RATIOS & RATES Per:
DEFINITIONS 1) RATIO: THE RELATIONSHIP BETWEEN 2 (OR MORE) QUANTITIES. (ex) 2 parts overge juice to 1 part pineapple juice [2:1], 2) FRACTION: THE RATIO OF PARTS TO THE WHOLE (OSI 3); INDICATES THE MULTIPLICATIVE RELATIONSHIP BETWEEN 2 QUANTITIES. 3) RATE: A (2-ENTITY) RATIO HAVING DIFFERENT UNITS OF MEASURE. (EX) Miles OF MEASURE. (EX) MILES (FOUND BY DIVIDING). FIND THE FOLLOWING UNIT RATES. (YOU MAY USE A CALCULATOR [3]) FIND THE FOLLOWING UNIT RATES. (YOU MAY USE A CALCULATOR [3]) FIND THE FOLLOWING UNIT RATES. (YOU MAY USE A CALCULATOR [3]) FIND THE FOLLOWING UNIT RATES. (YOU MAY USE A CALCULATOR [3]) FIND THE FOLLOWING UNIT RATES. (YOU MAY USE A CALCULATOR [3]) FIND THE FOLLOWING UNIT RATES. (YOU MAY USE A CALCULATOR [3]) FIND THE FOLLOWING UNIT RATES. (YOU MAY USE A CALCULATOR [3]) FIND THE FOLLOWING UNIT RATES. (YOU MAY USE A CALCULATOR [3]) FIND THE FOLLOWING UNIT RATES. (YOU MAY USE A CALCULATOR [3]) FIND THE FOLLOWING UNIT RATES. (YOU MAY USE A CALCULATOR [3]) FIND THE FOLLOWING UNIT RATES. (YOU MAY USE A CALCULATOR [3]) FIND THE FOLLOWING UNIT RATES. (YOU MAY USE A CALCULATOR [3]) FIND THE FOLLOWING UNIT RATES. (YOU MAY USE A CALCULATOR [3]) FIND THE FOLLOWING UNIT RATES. (YOU MAY USE A CALCULATOR [3]) FIND THE FOLLOWING UNITS FOR MAY USE A CALCULATOR [3] FIND THE FOLLOWING UNITS FIND THE FOLLOWING UNITS FOR MAY USE A CALCULATOR [3] FIND THE FOLLOWING UNITS FIND THE FOLLOWING UNITS FOR MAY USE A CALCULATOR [3] FIND THE FOLLOWING UNITS FOR MAY USE A CALCULATOR [3] FIND THE FOLLOWING UNITS FOR MAY USE A CALCULATOR [3] FIND THE FOLLOWING UNITS FOR MAY USE A CALCULATOR [3] FOR MAY USE A CALCULATOR [3] FIND THE FOLLOWING UNITS FOR MAY USE A CALCULATOR [3] FOR MAY USE A
(1) 500,000 U.S. murders per year = murders 1 minutes 1 minutes 1 minutes 1 minutes 1 minutes 1 minutes 1 miles 1 gallon of gasoline = 1 gallon

A) (THIS IS AN IMPORTANT CALCULUS-READINESS WORKSHEET.)
RATE PROBLEMS
* RECALL THE FORMULA [RATE × TIME = DISTANCE] (RITED)
OR MORE GENERALLY RATEX DENOMINATOR WHAT TITY = NUMERATOR GLIMATY).
PESIRED QUANTITIES (USUALLY) BY MULTIPLYING.
CAPCULATE THE FOLLOWING. (YOU MAY USE A CALCULATOR 11)
1) How many seconds are in 1 years
@ If your heart rate is 80 beats per minute, now many
(3) If Mercury weighs. 88 pounds per ounce, new mercury weigh? (1 cup = 802)
(4.) If your computer can down and tiles at a rate of the
a \$50 item cost 1 year from now?
Der week, & 50 weeks per year, how much will you make in 1 year?
DIF you make \$20 per 1 hour, work & now see in 1 year?] per week, & 50 weeks per year, how much will you make in 1 year?] DIF you read at a rate of 200 words per minute, and there are 300 words per page, how long will it take to read 400 pages? [are 300 words per page, how long will it take to read 400 pages? [
(8) It a privile carry privile to many ?
(9) It it takes to hours to print to about ments?
(10) It a tank is leaking at a land
(11) It you walk at a factor of
will you walk in 12 hours? (D) If the speed of light is 186,000 miles per second, how many times will it go around the Earth in 1 second? (Earth's curcumference ~ 25,000 miles)

Par:

APPROXIMATING SLOPES

GIVEN 2 POINTS (X_1, Y_1) & (X_2, Y_2) , THE SCOPE OF THE LINE BETWEEN THEM IS $M = \frac{Y_2 - Y_1}{X_2 - X_1}$.


THE CLOSER THE 2 POINTS ARE, THE BETTER OUR APPROXIMATION OF THE SLOPE AT ONE POINT WILL BE.

DIRECTIONS: For each problem, approximate the slope of $y=x^2$ at the first point by calculating and graphing the slope of the line through it and the second point.

(1) At (1,1) from (2,4).

(1) from (12, 24).

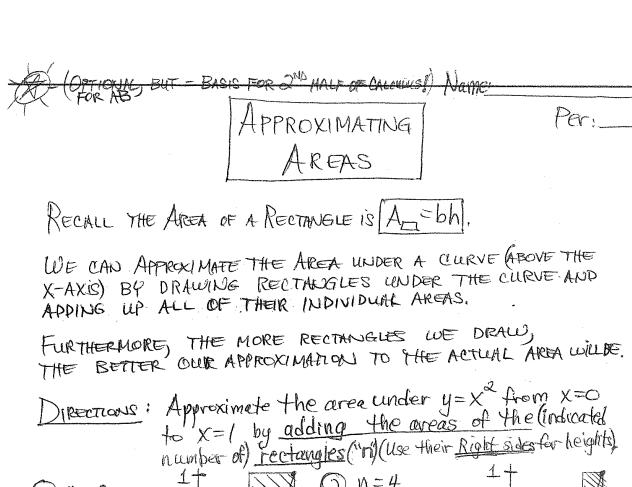
3. At (1,1) from (1+h, (1+h)2).

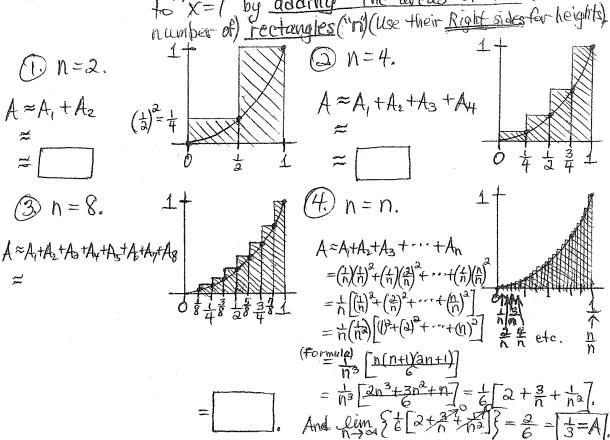
Then take lim(m).4 + (h=a small#)

(1+h) 2 2 1 1 2 3 4

Then take lim (m). 4+

(X+h)(X+h)².


Then take lim (m). 4+


(X+h)² 3+

(X+h)²

DERIVATIVES POWER FUNCTIONS

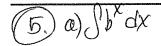
ERNATIVE: THE LIMIT OF THE RATE OF CHANGE OF A DEPENDENT VARIABLE TO ITS INDEPENDENT VARIABLE > 0. (1e. LIMIT OF SLOPE OR RATIO OF INFINITESIMACHAGE) FOR POWER FUNCTIONS, THE DERIVATIVE CALCULATION SIMPLIFIES TO (= SHORTCUT RESULT) Directions: Find y and evaluate It at the indicated x-values.

ATT (OPTIONAL BUT = BASIS FOR 2 ND HALF OF CALCULUS (CONTO)!)
ANTI-DERIVATIVES OF POWER FUNCTIONS
Defo ANTI-DERIVATIVE (): A FUNCTION WHOSE DERIVATIVE IS THE ORIGINAL FUNCTION (F) GIVEN.
BECAUSE ANTI-DIFFERENTIATION IS THE REVERSE PROCESS OF DIFFERENTIATION, THE ORIGINAL FUNCTION CAN BE THOUGHT OF AS A RATE THAT IS BEING MULTIPLIED BY ITS DENOMINATORIAL QUANTITY, THUS RESULTING IN (THE CHANGE IN) THE NUMERATORIAL QUANTITY (=THE ANTI-DERIVANCE FUNCTION).
In other words, THE ARTI-DERIVATIVE FUNCTION IS THE PRODUCT-SUM FUNCTION FOR A GIVEN ORIGINAL FUNCTION. (IN THE LIMIT OF THE SUM OF AN INFINITE NUMBER OF PRODUCTS.) $F(X) = \int_{0}^{\infty} f(t)dt = \lim_{n \to \infty} \sum_{k=0}^{\infty} f(t) pxt \left(\frac{1}{n} \Rightarrow F(x) = f(x) \right)$
FOR POWER FUNCTIONS, THE ARTI-DERIVATIVE CALCULATION SIMPLIFIES TO [STORY OF POWER RULE FOR DERIVATIVES] (8 = REVERSE OF POWER RULE FOR DERIVATIVES)
DIRECTIONS: Find F(X)= I fixed for the given function B(X)
(1) $f(x) = 2 (=2x^{\circ})$. (a) $F(x) =$ (b) $F(0) =$ (c) $F(1) =$ (d) $f(x) = 2x$. (d) $f(x) = 2x$. (e) $f(x) =$ (f) $f(x) =$ (f) $f(x) =$ (g) $f(x$
(a) $F(x) = x^2$. (b) $F(x) = x^3 + 1$. (c) $F(x) = x^3 + 1$. (d) $F(x) = x + x^3 + 1$. (e) $F(x) = x + x^3 + 1$. (f) $F(x) = x + x^3 + 1$. (g) $F(x) = x + x^3 + 1$. (h) $F(x) = x + x^3 + 1$. (e) $F(x) = x + x^3 + 1$. (f) $F(x) = x + x^3 + 1$. (g) $F(x) = x + x^3 + 1$. (h) $F(x) = x + x^3 + 1$. (l) $F(x) = x + x^3 + 1$.

(Bo pula)	300	A. A
Davy)	AAAAAAA	Wano?
. 9/	CAL CULLS AD	P.
	FINAL REVIEW (PART));(ter:
	FUNDAMENTAL	Ž
FIND THE	ELLOWING.	
(1), lim X	-3 +9 =	

$$\lim_{x \to -3} \frac{x+3}{x^2+9} =$$

$$(2) (x^3 + 2x^2 + 5x + 6) =$$


(3) At WHICH X-VALUE(S) COOLD y = 2x3-3x2-36X+54
HAVE A LOCAL MAXIMUM OR LOCAL MINIMUM?

(BC only)	CALCULUS AB	Names
	FINAL REVIEW (PART	I) Per:_
	FINAL REVIEW (PART BASIC PROBLEMS	
FIND THE FOLL	owing.	
$ \begin{array}{c} \text{(1.) lim} \frac{X^2 + 3X}{X - 6} \end{array} $	-10 =	
(2) a) A PHYSICAL DIFFERENTI	CHARACTERISTIC OF THE	HE GRAPHS OF THAT THEY ARE
b) TRUE OR F.	ALSE',	THE IT IS DIFFERENCE THERE
(ii) IF A F	cupation is differentiable	THEN IT IS DIFFERENTHERE, E, THEN IT IS CONTINUOUS
(3) a) $(\sin x) =$	b) (cosx)=	c)(toenx)=
d) (csex) =	e) (secx) =	f) (ofx) =
g) (ex) =	h) $(xe^x)'=$	i) (e2x) =
(4) $e^{x}dx =$	b) I son	cdx =
c) $\int \frac{1}{x} dx =$	d) (x-1	dx =
(b)a) J3x2sin(X3)dx		
b) THE AREA UN	DER Y=X2 FROM X=	o to X=7 is

a) THE AREA BETWEEN $y = x^2 6 y = x$ is

(b) Solve $\frac{dy}{dx} = x^2 y$.

(Boonley) CALCULUS AB Voine:
LALCULUS AD Paris
FINAL REVIEW (PARTITY); COMMON PROBLEMS
· · · · · · · · · · · · · · · · · · ·
FIND THE FOLLOWING.
(i) $\lim_{X\to 0} \frac{e^{5X}}{X^2} =$
$(\mathfrak{D}) \circ (\mathfrak{b})' = \mathfrak{b} \circ (\mathfrak{L} n x)' = \mathfrak{b}$
c) $(\alpha g_b x)' =$ $(solve for x to prove.)$
(Solve for x to prove.)
a) FORMULA FOR THE SLOPES OF ALL TANGENT LINES TO $y=x^2$.
b) SLOPE OF THE TANGENT LINE TO Y=X2 AT X=2.
c) THE EQUATION OF THE TANGENT LINE TO Y=X2 AT X=2,
(4) a) WHAT IS THE DEFINITION OF A CRITICAL POINT?
b) FOR $y = x^3 + 3x^2 - 9x$, (i) FIND WHERE IT HAS A LOCAL MINIMUM BYOR MAXIMUM (BY FINDING WHERE THE SLOPE OF ITS TANGENT LINES EQUAS OF THE SLOPE OF T
(10) ITS ABSOLUTE MAXIMUM & MINIMUM ON XE [-10,10].
c) SKETCH ITS GRAPH.

b) Jax-1 dx

() FIND $\chi(t)$ = the position of an object, given $\chi(t)$ | its constant acceleration is $\alpha = 30$, $\chi(t)$ | its initial position is $\chi(t) = 0$, $\chi(t)$

a) FIND THE AVERAGE HEIGHT OF Y=X2 ON THE INTERVAL FROM X=0 TO X=2.

e) Use the Disk Method to FIND the volume of the solid obtained by rotating the curve y = JX about the x-axis from x=0 to x=3.

6) Sketch THE SCOPE FIELD FOR Y'=X.

(BC	9-11	be	
			\mathcal{C}	1

CALCULUS AB FINAL REVIEW (PARTIII): LESS COMMON PROBLEMS

Per:__

FIND THE FOLLOWING.

(1) a) FIND
$$y'$$
 FOR $x^2 + xy - y^2 = 5$.

b) Find y' FOR
$$y = \frac{(x+1)^2(2x^2-3)}{X^2+1}$$
.

a) Approximate JTO BY APPROXIMATING THE FUNCTION $y = \sqrt{X}$ with its tangent line at X = 9.

(2) IF A RECTANGULAR BOX OF LENGTH L=12 IN. & WITH W=6 IN.
IS BEING FILLED WITH WATER AT A RATE OF 18 IN 3/MIN,
HOW FAST IS THE HEIGHT OF THE WATER RISING?

(1

(3) APPROXIMATE THE AREA UNDER $y = x^2$ FROM X=0 TO X=1 with 4 RIGHT-ENDPOINT RECTANGLES.

4) USE THE CYLINDRICAL SHELL METHOD TO FIND THE REGION VOLUME OF THE SOLID OBTAINED BY ROTATING THE REGION ABOVEY = X2+1 ABOUT THE Y-AXIS FROM X=0 TO X=3.